Showing posts sorted by date for query broadband definition. Sort by relevance Show all posts
Showing posts sorted by date for query broadband definition. Sort by relevance Show all posts

Wednesday, March 26, 2025

Asking the Wrong Question about 5G

The claim  that "5G has failed” is in some ways an odd one. On one hand, critics tend to cite the unfulfilled promises of exciting new use cases. On the other hand, critics tend not to focus on the lower latency, faster speeds or energy efficiency that each successive network also is founded upon. 


But that might be the main point: each successive mobile generation has been successful and necessary precisely for the reasons that consumer home broadband experiences have been based on ever-increasing bandwidth, capacity and access speeds. 


So alter the question just a bit to understand the real impact. Do you ever really hear observers arguing that mobility services (mobile phone service) actually have failed? One does not hear such claims because mobile service clearly has been a raging global success. 


Some 71 percent of humans presently use a mobile phone, according to the GSMA.  


source: World Economic Forum 


So “mobility” has clearly succeeded, even if some feel particular mobile platforms have not. To be sure, proponents have touted the creation of platforms for futuristic use cases (the network will support them), not the extent of usage. Some examples can always be cited, though often not mass market adoption. 


To be sure,  every mobile generation since 3G has made such claims. And we might advance some very-practical reasons for the claims. Each mobile generation requires the allocation of additional spectrum from governments, which have to be convinced to do so.


Pointing out the new potential applications; the contribution to economic growth; educational advantages and so forth are part of the effort to secure the new spectrum. 


Also, infrastructure suppliers have a vested interest in enticing operators to create whole new networks precisely because it might be possible to create new revenue streams, or provide


Still, each successive mobile platform has promised, and delivered, latency improvements of about 10 times over the preceding generation, as well as potential bandwidth (internet access speeds) of 10 times more, and typically also energy consumption efficiencies as well. 


The practical improvements always vary from laboratory tests, though. The actual behavior of all radio waves in real-world environments is an issue. So are the realities of impediments to signal propagation (walls, trees, other obstacles) and signal interference.


Cell geometry also matters. Higher bandwidth is possible when smaller cells are used. 


Higher bandwidth is possible when channel sizes are increased (as when channels are bonded together to create a single wider channel from two or more narrower channels). 


And real-world “customer-experienced speeds” also are dependent on which actual frequencies are used widely by each mobile generation. Lower frequencies propagate better, but higher frequencies support higher speeds, all other things being equal. 


Still, the point is that observers never question the “success” of the mobile phone and mobile networks, only the “failure” of futuristic apps to emerge. 


That is not the point. The primary and essential value of each successive mobile platform comes from network performance (lower latency, higher bandwidth) and not the possible new apps, which cannot be created by mobile operators in any case, anymore than internet service providers having created Facebook. Google, Amazon, YouTube or Uber. 


Mobile operators can only create the physical infrastructure third parties can use to create new use cases. And that has been accomplished. But then innovation leading to new apps rests in the hands of entrepreneurs and investors.  


That’s the whole implication of “permissionless innovation” the internet is based upon: innovators do not have to own networks to build apps that use the networks. The entities that own the access or transport networks do not necessarily or primarily create and own the apps. 


Oddly, the reverse tends to be the case: highly-successful consumer app providers find they can vertically integrate into core network transport as a means of lowering their costs. That is why most of the world’s long distance networks (subsea, especially) are built and owned by a relative handful of big app providers such as Alphabet (Google) and Meta. 


It is fair to note that few of the futuristic apps touted for 3G, 4G or 5G networks have become mass market realities. On the other hand, lots of highly-useful apps not envisioned for any of those networks have emerged.


Net

Predicted "Futuristic" Use Cases

Unexpected "Everyday" App Developments

3G

Video conferencing, mobile TV, advanced multimedia

Mobile social media (early stages), basic GPS navigation, early app stores

4G

Immersive VR/AR, high-definition mobile gaming, remote surgery

Ride-sharing apps (Uber, Lyft), widespread video streaming (YouTube, Netflix), robust social media (Instagram, TikTok), advanced turn-by-turn navigation (Google Maps)

5G

Holographic communication, tactile internet, massive IoT deployments

Enhanced real-time location based services, very high definition mobile video streaming, cloud gaming, very reliable real time social media interactions. Increased use of live streaming services, and the further enhancement of cloud based applications.


All of which suggests we are very bad at predicting the future; innovations often emerge unexpectedly and only when users see the value. 


Consider only the industrial, commercial, medical and other applications generally centered around the use of sensors and mobile networks as the connectivity mechanism. Most have not taken off in a significant way, even if there are some instances of viable and routine deployment. 


Generation

Touted Possible New Applications

3G

- Telematics for automotive industry5


- Smart home devices (thermostats, security cameras)1


- Traffic light systems1


- Vending machines with remote monitoring1


- GPS trackers for livestock1


- Wearable devices and e-readers1


- Medical alert devices1


- Remote weather stations1

4G

- Enhanced mobile broadband for video streaming and gaming6


- Smart home applications2


- Internet of Things (IoT) connectivity2


- Remote monitoring systems2


- Vehicle communications (real-time road information, navigation)2


- VoIP calls and video conferencing6


- Mobile payments6

5G

- Telesurgery and remote medical procedures4


- Fully autonomous vehicles4


- Advanced connected homes4


- Portable Virtual Reality (VR) experiences4


- Smart city infrastructure4


- Ultra-reliable low latency communication (URLLC)3


- Massive Machine Type Communication (mMTC)3


- Industrial automation and robotics8


- Remote patient monitoring in healthcare7


- Large-scale IoT deployments in agriculture, utilities, and logistics


For the most part, the futuristic appl;ications have not developed as expected, and when they do take hold, it often is in the subsequent generation.


Many expected 3G to produce mass market usage of videoconferencing. That did happen, but only in the 4G era, with social media and other multimedia messaging apps, for example. That is a fairly common pattern: we overestimate routine adoption by at least a decade. 


Use Case Prediction

Actual Adoption (at least early stage)

Delayed Applications Likely Emerging in Later Generations

3G Expectations

(Medical devices, telematics, mobile TV)1

4G Realizations (IoT connectivity, smart meters, vehicle telematics)2

4G Concepts for 5G Era

- Advanced industrial automation3

- Mobile medical monitoring systems3

- Smart grid controls3

- HD public safety cameras3

4G Expectations

(Massive IoT, Industry 4.0)2

5G Realizations (Network slicing, enhanced mobile broadband)4

5G Concepts for 6G Era

- Holographic communications5

- Autonomous vehicle networks57

- Network-as-sensor technology5

- Microsecond-latency telesurgery7

5G Expectations

(URLLC, mMTC)34

6G Projections

- 1,000x faster latency than 5G7

- AI-optimized networks5

- Energy-efficient massive IoT6

6G Horizon

- Real-time digital twins5

- Military-grade AR simulations5

- Advanced environmental sensing5

- 8K holographic streaming


The point is that mobile services and smartphone services have proven wildly successful. In fact, nobody doubts that. What often gets criticized are the many futuristic apps that could be developed with each next-generation mobile network.


That misses the point. As fixed network home broadband has to continually extend internet access speeds and bandwidth, so too do mobile networks. The bottom line is that each successive mobile generation succeeds to the extent it does so.


Monday, February 10, 2025

No AI "Killer App?" It is to be Expected

It's too early to contemplate an artificial intelligence "killer app." Indeed, some will be tempted to argue there will be lots of killer use cases, and less likely an identifiable killer app.


Indeed, that is characteristic of "general-purpose technologies" that affect whole economies.


GPTs are technologies that have the potential to transform multiple sectors and industries, such as the steam engine, electricity, and the internet. By definition, such technologies affect the entire economy.

Given the broad applicability and versatility of GPTs, it's unlikely that a single killer app would be the primary driver of adoption. Instead, GPTs often enable a wide range of innovative use cases across various industries.

The Internet: enabled e-commerce, online education, remote work, social media, and has affected the entire economy, virtually every industry to some extent and life in general.


Other compuing technologies which are not GPTs, also by definition, have some “killer app” or “killer use case” that drove mass adoption. The spreadsheet drove business adoption of personal computers, for financial modeling. Graphic design software (and desktop publishing) arguably propelled adoption of the Macintosh.


Word processing arguably drove widespread adoption of PCs by non-financial personnel. The web browser and World Wide Web’s multimedia capabilities spurred mass adoption of all sorts of visual, auditory and interactive applications (aided by broadband, which made visual content possible). 


Computing “in your pocket or purse” drove smartphone adoption beyond business users whose killer app was mobile email access. 


Year

Platform

Killer App

Description

1979

Apple II

VisiCalc

Spreadsheet software that revolutionized personal finance and business analysis.

1983

IBM PC

Lotus 1-2-3

Powerful spreadsheet software that further popularized the PC.

1985

Macintosh

MacPaint and MacDraw

Graphic design software that showcased the intuitive user interface of the Mac.

1987

IBM PC

Microsoft Word for Windows

Word processor that became the industry standard for document creation.

1990

Various

World Wide Web

The interconnected network of web pages that transformed information access.

1995

Windows 95

Microsoft Internet Explorer

Web browser that popularized the internet for the masses.

1998

iPod

iTunes

Digital music player and media store that revolutionized the music industry.

2007

iPhone

App Store

Marketplace for mobile apps that transformed the smartphone industry.

2009

Various

Google Chrome

Web browser that focused on speed and simplicity.

2010

iPad

Various apps

Tablet computer that popularized e-books, gaming, and productivity apps.

2016

Various

Pokémon Go

Augmented reality game that brought the world outside into the digital realm.

2020

Various

Zoom

Video conferencing software that became essential during the COVID-19 pandemic.


If AI emerges as a GPT, it is unlikely to have a single killer app or use case. GPTs just are different. 


Can "Articulate Medical Intelligence Explorer" Outperform Primary Care Physicians?

A study suggests Articulate Medical Intelligence Explorer, a large language model (LLM)-based AI system optimized for diagnostic purposes, m...