Friday, October 30, 2020

Why 4G Sometimes is Faster than 5G

As always, the amount of spectrum available to any mobile service provider correlates with potential data throughput. As AT&T, for example, has rolled out 5G service, it has relied on low-band assets initially.


And no amount of fancy signal processing is going to compensate for the amount of spectrum available to support 5G, compared to 4G, for example. If you look at the total amount of spectrum available to support AT&T’s 5G coverage, you can see that 4G spectrum is more capacious than 5G. 


source: PCmag 


That means AT&T’s 5G network--for the moment--offers less speed than the 4G network. That will change over time, and likely quite substantially. 


Over the last decade, average (or perhaps typical) mobile data speeds have grown logarithmically, according to data compiled by PCmag. I cannot tell you whether the graph shows median or mean speeds, but the point is that, assuming the same methodology is used for all data, the logarithmic trend would still hold. 

 

source: PCmag 


There is no reason to believe 5G will fail--over time--to continue the logarithmic trend, with the release of huge amounts of new spectrum, expanded use of spectrum sharing and spectrum re-use, plus small cell access.


Wednesday, October 28, 2020

Need for Global Scale Will Limit Telco IoT, Edge Computing Success

Among other reasons, lack of global scale is likely to prevent most telcos or mobile operators from becoming leading providers of internet of things or edge computing solutions or platforms. Generally, scale economics work against most telcos, no matter how large. 


That is not to say large telcos cannot significantly diversify revenue streams. AT&T has managed to shift its revenue sources enough that perhaps 43 percent of total revenue comes from something other than connectivity services. Softbank (at least until recently) had managed to generate perhaps 33 percent of total revenue from non-connectivity sources, while KT had reached about the same level. 


source: GSMA 


Many other tier-one telcos have managed to add between 10 percent and 25 percent of total revenue from sources other than connectivity. The need for scale seems to apply for those operations as much as it matters for the core connectivity business. But there are issues beyond scale. 


To be sure, new services such as the internet of things and edge computing will make some contribution to service provider revenues. Still, most of the value and revenue from IoT will be created elsewhere in the value chain (semiconductors, devices, platforms, integration, application software), not in connectivity. 


Perhaps edge computing will show the same dynamics, as edge computing still is about computing. That means the leading suppliers of computing--especially cloud computing--have a reasonable chance of emerging as the leading suppliers of workload as a service at the edge. 


Simply, if it is logical to purchase compute cycles from a major cloud or premises computing supplier, it will likely make just as much sense to purchase edge compute the same way. 


In other words, customers tend to have clear preferences about the logical suppliers of various products, beyond scale. The phrase “best of breed” captures the thinking. If an enterprise or other entity is looking at premises computing, it looks to certain brands. If a company is looking for cloud computing, it looks to other brands. 


Almost never is a telco among the logical five potential choices for buying compute cycles or computing platforms. 


That noted, tier-one telcos have made important strides diversifying beyond core connectivity. Among the issues are the extent to which that can happen in the edge computing or IoT realms.


BT to Build Private 5G Network for Belfast Harbor

BT says it is building and will operate a private 5G network on behalf of Belfast Harbor, covering large parts of the 2,000-acre site in 2021. BT says it aims to build “a state-of-the-art 5G ecosystem within the Port.”


Aside from supporting mobile phone service, the private network will enable remote controlled inspection technology (presumably use of drones), reducing the need for workers to climb towers. The network also will support air quality sensors. 


One can guess from those two examples--and BT’s talk of developing an ecosystem, that most of the expected smart harbor applications have not yet been deployed or developed, or perhaps have not yet been adapted to work on the 5G private network. 


Joe O’Neill, Belfast Harbor chief executive says the network is intended to support accurate tracking and integration of data gathered from multiple sources, and expects the new network to help it capture, process and interpret data in real time.


Tuesday, October 27, 2020

It's Hard to Win a Zero-Sum Game

Zero-sum games are hard to win, in part because every winner is balanced by a loser. Many mature mobile communications markets are largely zero-sum games these days. Market share, by definition, means one supplier gains exactly what another supplier loses. 


That is not the case for new, emerging or growing markets, where virtually all contestants can, in theory, gain while nobody loses. 


The substitution of machines for human labor is something of a zero-sum game as well.
The notion of tradeoffs is key for zero-sum markets. Consider minimum wage laws or unionization of employees. The issue is not whether those things are good or bad, but simply the tradeoffs that are made. 


Higher minimum wage laws. produce higher wages for a smaller number of employees, in part because higher wage minimums increase the attractiveness of substituting machines for human labor. 


Higher union membership and bargaining power tends to produce higher wages for union members, but often at the cost of the number of people who are employed at unionized businesses. 


The other trend we see is that when forced to make a choice, unions tend to prefer saving a smaller number of jobs in return for gaining higher wages. Workers with less seniority normally are sacrificed in such deals. 


We can disagree about whether Uber and Lyft drivers are independent contractors or employees. But it is not hard to argue that if employee classification leads to higher minimum wages, it also will lead to fewer Uber and Lyft drivers able to work. 


We can make any choices we want about which outcome we prefer: more work for more people or higher wages for fewer workers. But the choices will inevitably be made. It’s a zero-sum game.


As more and more telecom markets reach saturation, zero-sum outcomes will appear in market share statistics or the number of 4G phone account subscribers versus 5G subscribers.


Mobile operators can bend the curves a bit by changing value propositions, adding new features and bundling devices and features (up to a point) to encourage customers to switch to more-expensive plans, when they come up with compelling offers. But all of that occurs within a business that is largely a zero-sum game in many markets.


"When I Use a Word, it Means just What I Choose it to Mean"

Telecom terminology changes from time to time. These days, a “core network” for a private 4G or 5G network requires software we formerly associated with a mobile network core, such as base station control functions, routing, synchronization, timing and so forth.

These days “voice” often refers to the interface people use to interact with their phones, smart speakers or car communication systems, rather than the older notion of voice phone calls. 

Broadband used to be defined as any data rate of 1.544 Mbps or higher. These days it is some higher number that we adjust periodically. 

“Mobility” used to refer to use of mobile phones and cellular networks. These days it often refers to ride sharing. 

“Over the top” has been used in the past to describe video entertainment, messaging or voice applications provided by third parties and accessed by users and customers over any internet connection. Today it might more properly describe any service or application accessed over a communications network that is not owned by the supplier of access services.

“When I use a word, ‘it means just what I choose it to mean” the Lewis Carroll character Humpty Dumpty says. That’s an exaggeration as applied to use of terms in telecom, but the general drift is correct. 

Wednesday, October 21, 2020

2020 was Tough for Mobile Subscriptions, Better for Fixed Network Internet Access

With the caveat that usage is not identical to revenue earned from that usage, 2020 has generally not been a favorable year for mobile operator subscription growth, with a couple of exceptions, according to the Economist Information Unit. 


Fixed network internet access has held up better in most markets, with the strongest growth in the Middle East and Africa. 

source: Economist Information Unit 


Regions that saw the strongest fixed network subscription growth will see lower rates in 2021, while mobile subscription growth will improve in virtually every region in 2021.


Friday, October 16, 2020

Brownouts are an Issue, But Might be Almost Unavoidable

Brownouts tend to be a typical feature of most networks using internet protocol.  Where most measures of availability (reliability, we sometimes call it) measure times or percentages of times when a resource is unavailable to use, brownouts represent the times or percentage of times when a network or resource does not operate at designed levels of availability.


Just as an electrical brownout implies a severe drop in voltage but might not be an outage, a network brownout follows a sharp degradation in link quality but might result in the affected circuits still being technically “up,” Oracle says. “This decline may be triggered by congestion across the network or a problem on the service provider’s end.”


Brownouts are in one sense “a feature not a bug,” a deliberate design choice that prioritizes resiliency over guaranteed throughput. That is the whole architectural principle behind internet protocol, which sacrifices routing control and quality of service on defined routes in favor of resiliency gained by allowing packets to travel any available route. 


And since the availability of any complex system is the combined performance of all cumulative potential element failures, it should not come as a surprise that a complete end-to-end consumer user experience is not “five nines,” though enterprise networks with more control of transport networks and end points might be able to replicate five nines levels of performance. 


The theoretical availability of any network  is computed as 100 percent minus the product of the component failure rates (100 percent minus availability). For example, if a system uses just two independent components, each with an availability of 99.9 percent, the resulting system availability is less than 99.8 percent. 


Component

Availability

Web

85%

Application

90%

Database

99.9%

DNS

98%

Firewall

85%

Switch

99%

Data Center

99.99%

ISP

95%

source: IP Carrier 


Consider a 24×7 e-commerce site with lots of single points of failure. Note that no single part of the whole delivery chain has availability of  more than 99.99 percent, and some portions have availability as low as 85 percent.


The expected availability of the site would be 85%*90%*99.9%*98%*85%*99%*99.99%*95%, or  59.87 percent. Keep in mind that we also have to factor in device availability, operating system availability, electrical power availability and premises router availability. 


In choosing “best effort” over “quality of service,” network architects opt for “robustness” over “reliability.” 


Source: Digital Daniels

DIY and Licensed GenAI Patterns Will Continue

As always with software, firms are going to opt for a mix of "do it yourself" owned technology and licensed third party offerings....