Wednesday, June 5, 2024

The AI Business Stack

Most observers probably expect that artificial intelligence will produce some combination of new features for existing functions (image processing, speech to text, language translation, summarization, search, content creation, editing, shopping, research) as well some new use cases that could well produce entirely-new firms, industries and revenue streams. 


It is logical that AI will be used to improve existing products such as Apple’s Siri or Google search, by making existing functions “smarter and faster.”


But entirely-new firms and industries are more likely to be built, one might argue, in a different way, using AI agents, which arguably are better at tasks where lots of unstructured data and relationships between data are involved. 

source: Ark Invest 


To use an analogy, think of the difference between random access memory and sequential access memory. In the early days of the personal computer, that difference was between disk drives and tape drives. 


Or think of programmed processors such as application-specific integrated circuits or field-programmable gate arrays, versus general-purpose central processing units. 


In the pre-recorded music use case, think of tape drives versus compact discs or streaming delivery. While it is possible to pick a single song off a tape, there is substantial winding or rewinding time. With CD or streaming access, there is little to no navigation required, to say nothing of the “discovery of content” function. 


Other similar analogies are possible. Think of live or pre-recorded linear television (broadcast or streamed) versus on-demand video, where one experience is scheduled and linear; the other built on-demand access allowing users to skip around a catalog to make choices. 


The point is that AI agents might resemble general-purpose CPUS instead of ASICs; random access memory; on-demand audio or video: allowing unstructured operations using unstructured and structured data for unexpected tasks. 


And since investors are so focused on AI opportunities, it might be helpful to liken various AI functions to the standard software “stack.”


OSI Layer

OSI Model Functions

AI Model Functions

Physical Layer

Physical transmission medium (cables, etc.)

Hardware Layer: Physical components like CPUs, GPUs, TPUs that perform AI computations.

Data Link Layer

Packet transmission and error detection

Data Layer: Management of data used to train and operate AI models. This includes data pre-processing, cleaning, and formatting.

Network Layer

Routing data packets across networks

System Software Layer: AI frameworks like TensorFlow or PyTorch that provide the structure and tools for building and training models.

Transport Layer

Reliable data transfer between applications

Machine Learning Layer: Machine learning algorithms that power AI models. This includes algorithms for tasks like classification, regression, and natural language processing.

Session Layer

Establishes, manages, and terminates sessions between applications

Model Training and Optimization Layer: The process of training and optimizing the AI model using the chosen algorithms and data.

Presentation Layer

Data presentation and encryption

Model Deployment and Inference Layer: Deploying the trained model and using it to make predictions or decisions on new data.

Application Layer

Provides user interface and network services

AI Application Layer: The actual application where users interact with the AI, such as a virtual assistant, recommendation system, or self-driving car.

Broadly speaking, investment opportunities will occur at every level of the AI stack.


Tuesday, June 4, 2024

Where is the AI Edge?

Artificial intelligence processing “at the edge” most likely needs to be qualified, as most of the processing is likely to happen on devices such as smartphones and PCs. Mizuho analysts, for example, forecast one billion AI smartphones shipped from 2024 to 2027. Intel, for its part, expects to ship 40 million AI PC processors in 2024 alone. 

 

Year

On-Device AI Chip Shipments (Millions)

On-Device AI Deployments (Billions)

On-Device AI Sales ($US Billion)

Source

2024

5.2 - 6.0

12.0 - 14.4

28.5 - 34.2

IDC AIoT Market Forecast 

2025

6.8 - 8.0

16.3 - 19.2

42.1 - 49.8

Gartner Forecast: Edge Computing

2026

8.7 - 10.2

21.0 - 25.2

62.4 - 74.7

Digi-Capital [On-Device AI Report]

2027

11.0 - 13.0

27.0 - 32.4

89.1 - 105.3

Yole Developpement [AI Hardware Market Report


Keep in mind that “AI capabilities” are going to be a feature of PCs and smartphones, rather than a distinct product category. Irrespective of the ultimate value of AI on such devices, we will be able to measure sales of products that are AI-capable, even if we might not easily be able to measure the incremental usefulness of AI on PCs and smartphones. 


Year

AI PC Sales Revenue

AI Smartphone Sales Revenue

Source

2024

102.3 - 127.8

214.6 - 268.3

Gartner

2025

148.5 - 185.7

287.1 - 352.4

IDC

2026

207.2 - 259.8

382.4 - 470.9

Counterpoint Research

2027

281.4 - 347.1

501.2 - 613.8

Strategy Analytics


AI “as a service” revenues might be robust as well. 


Year

Gartner

Forrester

IDC

McKinsey

Average

2024

132.5

117.2

125.8

150.4

128.9

2025

172.8

154.1

168.3

192.7

171.9

2026

223.7

202.4

221.5

247.8

221.1

2027

288.2

262.3

285.4

315.7

287.9

Use of Unstructured Data Might Give AI-Driven Financial Advice an Edge

The use of artificial intelligence to provide financial advice has far to go, at least partly for reasons of human trust in the quality of the advice. But there are some potential advantages for AI-generated algorithms that underpin the advice, when compared to current human-devised algorithms. 


It is relatively hard for human algorithms to quantify and make sense of unstructured data. That should be increasingly possible for AI, which will have the advantage of many more data points. On the other hand, AI systems might not be as well-equipped as human advisors when it comes to factoring in human emotions (fear versus greed). 


The same arguably holds true for unexpected events such as pandemics, wars or political upheavals. As a general rule, then, AI-generated advice might be more useful during times of relative market stability, while human decision-making might be more important at times of market turbulence. 


On the other hand, since AI can process so many more sources of data, faster than the human algorithms, it is possible AI also could be better at detecting shifts of trend. 


Also, to the extent that the AI algorithms can evolve organically over time, as the systems learn, AI could have an advantage over human-created algorithms that must be manually revised. For instance, “generally accepted accounting practices” and financial metrics of performance are relatively static measures. 


AI can take advantage of social media sentiment, easy measurement of cars parked in company parking lots and other non-traditional indicators that are similar to “channel checks.”


The point is that we might ultimately be surprised at how much "advice" businesses and functions will eventually be displaced by AI mechanisms. Much expert advice is driven by rules of thumb; general rules and experience or precedent.


AI is going to be pretty good at summarizing and applying such knowledge or precedent for financial guidance. Algorithms already have been driving buy-sell actions in equtiy markets, for example.


In the same way, the ability to process unstructured data might give AI systems an edge over human advice, or at least become a required part of humans giving advice.


Home Broadband Prices have Fallen, But People Don't Believe It

Based on the Producer Price Index (PPI), both home broadband and mobile broadband prices

have fallen consistently since 2016, while prices for electricity, natural gas and postal services have climbed.


The opposite claim--that home broadband prices have risen sharply--often is asserted. So why does it seem as though prices have increased? Because people are buying different products than they once did.

source: Phoenix Center


People once purchased dial-up connections operating at 56 kbps. Now they can buy connections operating at 2 Gbps, 5 Gbps or more. Or they can buy services operating at 100 Mbps to 1 Gbps. 

The faster services cost more, so people spend more. But on an like-compared-to-like basis, recurring prices actually have declined. I used to buy a 56  kbps service for about $20 a month; a 756 kbps service for more than $300 a month. More recently I have bought 300 Mbps or 500 Mbps or 600 Mbps services for prices ranging from $50 to $90 a month (plus assorted taxes and fees). 

My 1-Gbps asymmetrical service (plus taxes, fees, equipment rental, unlimited usage) topped $120. My latest symmetrical gig connection costs less than $90, everything included (taxes, fees, unlimited usage). 

One can argue I am "paying more" than I used to, but what I buy has changed. My speeds are four magnitudes of order higher than they used to be, and prices are less than an order of magnitude higher. Ignoring inlfation effects, one can argue I am "paying more" for home broadband. 

But home broadband comes in different tiers, and I do not buy the same tiers I once did, as I buy different consumer products than I once did. In some cases I pay less; in other cases I pay more, based on the "quality" or "features" of those products. 

And that might help explain why the "home broadband prices are higher" argument seems to make sense. 

One nuance also could be that the PPI measures selling prices for domestic goods and services, essentially tracking inflation at the wholesale level.

So some might argue that the Consumer Price Index (CPI) is the better gauge of what consumers are spending, but since 2015 home broadband prices for speed tiers other than the slowest 10 Mbps downstream product have declined, with the biggest declines coming in the faster speed tiers that most consumers are buying. 


 source: Tech Policy Institute 


All that noted, the reason the “home broadband prices have risen a lot” argument seems to resonate at times is that people are buying different products than they used to. Economists call changes in product quality “hedonic,” meaning that existing products can offer more value over time. 


Hedonic change has been a major trend for electronics products for many decades. 


Product Category

1980s Characteristics

2020s Characteristics

Hedonic Change

Televisions

Bulky CRT displays - Limited screen sizes (under 30 inches) - Standard definition (SD) resolution

Flat-panel displays (LCD, OLED) - Large screen sizes (over 65 inches) - High definition (HD), Ultra High Definition (UHD) or 4K resolution - Smart features with internet connectivity

Increased picture quality, size, functionality

Automobiles

Lower fuel efficiency - Fewer safety features (airbags, ABS) - Manual transmissions common

Improved fuel efficiency - Advanced safety features (automatic emergency braking, lane departure warning) - Automatic transmissions dominant - In-car entertainment systems with navigation and internet connectivity

Increased safety, comfort, and technology features

Smartphones

Brick phones with limited functionality (calls, basic games) - No cameras - No internet access

Large touchscreens - High-resolution cameras - Powerful processors for gaming and apps - Constant internet connectivity

Increased functionality, processing power, and connectivity

Home Appliances

Limited automation (manual controls) - Lower energy efficiency - Fewer features

Smart appliances with programmable features and remote control - Energy-efficient designs - Additional features like ice makers and water dispensers in refrigerators

Increased automation, efficiency, and functionality

Home Computers

Large desktop computers - Limited processing power and storage - No internet access for most

Sleek laptops and desktops - Powerful processors and ample storage - Ubiquitous internet access

Increased portability, processing power, and connectivity


Hedonic change refers to a shift in consumer preferences towards products with higher perceived quality, even if the core function of the product remains the same. The implication is that consumers are willing to pay more for these enhancements that bring greater satisfaction or enjoyment. 


And that is why home broadband prices seem to be “rising” when they actually might be “falling.” Customers are substituting higher-value (and higher price) services for those they once purchased.


Directv-Dish Merger Fails

Directv’’s termination of its deal to merge with EchoStar, apparently because EchoStar bondholders did not approve, means EchoStar continue...