Wednesday, March 27, 2013

Santa Clara Power Company Launches Free Public Wi-Fi


Free outdoor Wi-Fi (1 Mbps downstream speeds) in the City of Santa Clara is being launched by Silicon Valley Power, the city’s municipal power company, as part of its SVP MeterConnect program.

Santa Clara says it is the first city in the country to provide free outdoor Wi-Fi access for an entire community as part of an advanced electric meter upgrade program that uses wireless technology to read meters.

SVP expects over 5,000 connections a day on the free  public network.

As always is the case for a community broadband network, some sustainable way of generating the resources to keep providing the service is key. In this case, the resource model is the sale of electrical power to customers in Santa Clara.

That commercial revenue stream supports the operating and capital costs associated with the meter reading program, which in turn provides the capacity for the outdoor public Wi-Fi network.

When advanced meters are installed at residences starting late in 2013, electricity and water usage information will be highly encrypted and sent using the same wireless network that provides the public Wi-Fi.

The SVP MeterConnect network reserves a separate channel for the free, public, and unencrypted outdoor Internet service.


The network seems intentionally designed not to compete with commercial ISP operations. the network is not designed to support indoor coverage, so it really is not going to be a substitute for other commercial ISP services.

Also, the 1 Mbps (shared) network is not going to offer the sort of bandwidth most users these days will find too useful, as a primary connection.

More U.S. Mobile Spectrum Coming in September 2014?


The Federal Communications Commission has sent a letter to the National Telecommunications and Information Administration (NTIA) saying the commission plans to commence the auction of licenses in the 1.695 – 1.71 GHz and 1.755 GHz to 1.78 GHz bands as early as September 2014.


The FCC had earlier auctioned off adjacent portions of the Advanced Wireless Services band.

Those moves are part of a larger FCC effort to free up licensed and unlicensed spectrum for mobile and fixed broadband use, and appears to be considered an important part of licensing for
the 2.155 GHz to 2.18 GHz band.

As some propose, the 2.155 GHz to 2.18 GHz band could be paired with the 1.755 GHz to 1.78 GHz band.

This federal band is part of a larger federal band that NTIA' s Commerce Spectrum Management Advisory Committee (CSMAC) is studying for shared use between federal and commercial users.

Tablets Lead Global Growth of all "Smart and Connected Devices"


It would clearly be rational to argue that the smart phone is going to be the most ubiquitous device used to access the Internet, in most emerging markets. But  tablet importance is going to grow, especially if smart phone communications are grafted onto a greater number of tablet models.

Smart connected device volume in emerging markets grew by 41.3 percent in 2012 with the tablet volume growing by 111.3 percent and smart phone volume by 69.7 percent year over- year.

In mature markets, shipments of smart connected devices grew by 15.6 percent, with a “huge plunge in the PC market,” says IDC.  

By the end of year 2017, IDC predicts that the tablet and smart phone markets will have huge growth in the emerging markets.

In emerging markets, tablet unit shipments are expected to increase by 300 percent, while smart phone unit shipments are expected to double.

Portable PCs, on the other hand will show a moderate single-digit growth while desktop PCs are expected to consistently decline year over year with almost no growth in 2017.

"In emerging markets, consumer spending typically starts with mobile phones and, in many cases, moves to tablets before PCs," says Megha Saini, IDC research analyst.

Tablet shipments grew 78.4 percent year-over-year growth in 2012, representing 128 million devices, and driving global shipments of “smart connected devices,” according to International Data Corp.

IDC expects that tablet shipments will surpass desktop PCs in 2013 and exceed portable PC sales in 2014.

That could make the tablet the crucial computing device for fixed broadband services and ISPs selling fixed broadband services.

Smart Connected Device Year-over-Year Growth by Region and Product Category, 2012-2017
Region
Product Category
2012
2013*
2017*
Mature Market
Desktop PC
-4.8%
-5.5%
-2.9%
Mature Market
Portable PC
-8.1%
-3.1%
-1.4%
Mature Market
Tablet
62.8%
41.4%
8.3%
Mature Market
Smartphone
20.6%
15.1%
4.6%
Total Market


15.6%
13.8%
4.2%










Emerging Markets
Desktop PC
-3.8%
-3.5%
0%
Emerging Markets
Portable PC
-0.8%
4.1%
7.1%
Emerging Markets
Tablet
111.3%
60.7%
13.4%
Emerging Markets
Smartphone
69.7%
35.1%
12.2%
Total Market


41.3%
26.6%
10.9%










Worldwide
Desktop PC
-4.1%
-4.3%
-1.0%
Worldwide
Portable PC
-3.4%
0.9%
3.7%
Worldwide
Tablet
78.4%
48.7%
10.6%
Worldwide
Smartphone
46.1%
27.2%
9.8%
Total Market


29.1%
21.2%
8.5%
Source: IDC
* Forecast estimates.

Smart Connected Device Market by Product Category, Shipments, Market Share, 2012-1016 (units in millions)
Product Category
2012 Unit Shipments
2012 Market Share
2017 Unit Shipments*
2017 Market Share*
2012—2017 Growth*
Desktop PC
148.4
12.4%
141.0
6.0%
-5.0%
Portable PC
202.0
16.8%
240.9
11.0%
19.3%
Tablet
128.3
10.7%
352.3
16%
174.5%
Smartphone
722.4
60.1%
1,516
67%
109.9%
Total
1,201.1
100.0%
2,250.3
100.0%
87.3%
Source: IDC
* Forecast estimates.

Small Cell Backhaul: Fixed or Wireless?

While some people forecast that as many as 80 percent or 90 percent of outdoor small cells will be connected by wireless backhaul, Maravedis-Rethink believes mobile backhaul will mirror today’s pattern, where 55 percent is wireless and 45 percent uses a fiber connection.

“Operators will use fiber wherever possible and install short range wireless in the gaps,” according to Esteban Monturus, Maravedis-Rethink backhaul practice head. 

Wireless backhaul for small cells is forecast to grow rapidly until about 2013, according to Mobile Experts In 2016, for example, Mobile Experts expects sales of about $1.5 billion worth of small cell gear for wireless backhaul, for example.

But patterns likely will differ from country to country.Others think wireless will be more important. 

Where it comes to small mobile cell sites, which will, by definition, cover small areas primarily in high-traffic areas, backhaul costs will have to scale to match the large number of sites, and the relatively small number of customers served at any single site.

  So recurring backhaul costs are a huge issue. And the need for locating small cells in highly specific locations, which might not have easy direct line of sight, will tend to make non line of sight systems important.

Here's a great summary of mobile backhaul equipment.suppliers who can support small cells.

Internet Use is Ubiquitous, for People Up to Age 49


If you have followed adoption trends for consumer products ranging from subscription video to use of mobile phones, texting or social media, you know that adoption skews by age. 

For the older forms of media and communications, what happens over time is that the behaviors of the younger age groups become the behaviors of the total population. That is happening with use of the Internet as well.

The only surprise might be the small percentage of people who claim not to use the Internet. 

Intel Internet Video Service Making Progress?

Intel has been working on an Internet competitor to cable, satellite and telco TV that it had wanted to launch in 2012. As you would guess, Intel has had to work harder than expected to line up key programmers for a distribution strategy that competes with its present distributors (cable operators, telcos and satellite video suppliers such as DirecTV and Dish Network). 

Ignoring for the moment the current "average" amount of bandwidth U.S. consumers are able to obtain, the venture hinges on the ability to offer the same sorts of content cable TV, telco TV and satellite TV service providers offer. 


In that regard, Intel Corp. is "making progress" in talks with Time Warner, NBC Universal and Viacom to obtain TV shows and films for its online video service.

Intel reportedly is about to begin negotiations with News Corp. as well. Apparently, the talks with Disney and CBS are less well developed. 


Intel hopes to create a more flexible service, that might give subscribers more choices over the channels they receive. Just how much change programmers might agree to support is the question. 

There has been speculation that Intel could offer a streamlined selection of standard channels at a lower price, with or without the ability to view some content "on demand." Others have said a key draw would be the ability for consumers to have some ability to buy somewhat customized packages of service.

Many observers have argued that programmers will be quite careful about upsetting relationships with their present distributors. That would imply a very limited ability for Intel to offer too much customization of which channels or programs consumers could buy. 

On the other hand, it would precisely be just such customization that could provide huge incentives for consumers to consider an Internet delivery service. 

Faster Long Haul Communications?

Though neither technology is not commercially viable, two different techniques could speed up long distance communications and slice double-digit milliseconds off communications across some routes.

By getting optical signal propagation speed up to 99.7 percent of the speed of light, from the current 70 percent of light-speed, the best-case trip from Australia to the US would be cut from about 43 milliseconds to about 30 milliseconds, ignoring router hops and optical signal regeneration.

A research team from the University of Southampton in England achieved the faster speeds by taking the glass out of the glass fiber and creating a "hollow-core photonic-bandgap fiber."

The methods used by the researchers result in loss of 3.5 decibels per km, loss too high for undersea routes, for example.

Separately, some speculate that neutrinos could be used to send communications “through the earth,” achieving lower latency communications because the routes would be shorter than any cable route on the surface of the earth.

A signal sent between London and Sydney would shave abou 44 milliseconds off the fastest current alternative, for example.

There is one major problem, that being the need for a particle accelerator at each end, costing perhaps $1 billion each.


DIY and Licensed GenAI Patterns Will Continue

As always with software, firms are going to opt for a mix of "do it yourself" owned technology and licensed third party offerings....